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We present a mathematical model exhibiting the empirically observed

damping rates in elastic systems. The models studied are of the form

(A the xelevant elasticity operator)

¥+ Bx + Ax = 0
1.

related in various ways to the positive square root, A7, of A.

with B

Comparison with existing "ad hoc" models is made.
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SIGNIFICANCE AND EXPLANATION
. -~ YFrom empirical studies it is known that the natural modes of vibration
of elastic systems have damping rates which are roughly proportional to the
frequency of vibration. A number of ad hoc models exhibiting behavior of
this type have been proposed in the engineering literature but they are not
true dynamical systems nor are they very useful for numerical computations.
In this paper we present a model oﬁ the form: ' %

: G XY BEE Ax= 0 )
' N
with B, A positive, unbounded, self-adjoint operators on a Hilbert space
X, exhibiting the damping behavior just described, which is known as
structural damping. Finite dimensional analogs suitable for computation of
approximate solutions are also noted.ﬁrmhe operator B , which is closely
1

b 5
g related to operators of the form YAQ, Y > 0 , is known as the damping

. operator. Various types of damping operators are analyzed in Sections 3,

4 of this report,

It is expected that models of this type will permit realistic simula-

LS

tion of various elastic systems wherein damping cannot be ignored.
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A MATHEMATICAL MODEL FOR LINEAR ELASTIC SYSTEXS
WITH STRUCTURAL DAMPING

+ i
G. Chen and D, L, Russell”

l, Semigroup Background. A wide variety of conservative linear elastic systems may

be represented by a second order differential equation

X+ Ax =0 (1.1)
where +« means é% , x € X, a Hilbert space with inner product ( , ) and associatecd
norm I , and A is a positive self-adjoint operator on X , ordinarily hoandwd
with domain D(a) dense in X . Under these circumstances A has a non-negative
self-adjoint square root A% defined on a domain D(A%) c X . Throughout the paper
we will assume that A is bounded below, i,e.,

(x,A%), > alxl? , x e x,

X - X

for some fixed o > O, Then the spectrum of A is bounded away from zero and, as &
conseguence D(A%) > D(a); indeed p(ab) > D(Ap) if r and p are positive numbers
with r < p . Associated with (1.1} is the energy form

E(x, % = 301K12 + 1a%1?) (1.0
which is conserved when x(t) is a solution of (1,1). More on this shortly.

Perhaps the most notable disadvantage assoejiated with conservative systems is the
fact that they do not occur in nature, Always there are dissipative mechanisms actinag
within the system causing the energy to decrease during any positive time interval.

The most widely accepted mathematical model exhibiting such dissipative behavior taxes
the form

X + Bi + AX = 0 (1.
where B is again a positive self-adjoint operator on X with domain [(B) dense i

X . If =x(t) is a solution of (1.2), twice strongly continuously differcntiable it
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x(t) < D(a), x(t) ¢ D(B), then

-d%E(x(t),;t(t)) - dit LLGK(E),%(E)) + (AZX(E),A%(E))] = (%(t),R(t) + Ax(t))

= -(x(t),Bx(t)) < 0 .

For the moment this is all formal since we have not discussed the existence of, or the

nature of, solutions of (1.3).
Letting

z

z = 2 ’ lezzixl

the system (1.3) is formally equivalent, under the transformation z1 = x, 22 =x , to

z = Aoz ’
where

0 I 4 z

Az = = .
° -A 0 22 -Azl

We digress, briefly, to consider the case where A is only non-negative.
case we may write

X = X+ @ Xo ’

x+
XexX *Tx= [ 0 J-
X

and, for x < D(a) ,

+ +
A 0 { X A x+

0 (o] Kxo 0
Here XO is the null space of A . We will assume that A+ is bounded below.

(1.5) is the same as

zg 0 10 22 ]

zg T e o zg j '
zI e 1t z]

z; -a* 0 z; )

since (1.6) is almost trivial, only (1.7) need be satisfied., As a consequence,

(1.5)

In this

Then

(1.6)

(1.7)

we may

as well assume that A is bounded away from 2zero in (1.1), (1.5) when proving theorems

s 0
~t these systems, The space X

rigid body nmotion.
-2=

RN i

is usually finite dimensional, encompassing free
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With A bounded away from zero a ' A’ are non-negative bounded self-adjoint

operators on X . The transformation

It

1 -1
z A w

carries (l1.5) into

L=
] wz [ -a’? 0 | w
\ J

!,
It should be noted that the transformation (1.8) maps D(A%) @ X onto W = X @ X.

The energy from (l.2) maps into
di? < sati? s d?) .
applying the ineguality
AT - A,Z w
, > A Zawtn? + w?), 2 real ,

2
B AT v

1 2 %
which is easily verified for w ,w - D(a®), we see that

HRO,C )] <X, A %0 and real.
[ »

Then the Hille-Yoshida theorem ([2]) applies to give

Theorem 1l.1. The operator

‘_ -a? o0

generates a strongly continuous group of bounded operators So(t) on W=XS®&xX,

the solutions

w

N O

w(t) = SO(t)wO' Wy =
Yo

being strongly continuously differentiable and satisfying (1.9) in X for all t

just in case

1
Wwdooan .
0

(1.8)

(1.9)

(1.10)
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S Akl

For B positive and self-adjoint in (1.3) the first order system comparable to

(1.9) is
z= Az, (1.11)
(0] I zl Lo
ABZ = " - 22 . (1.12
Treating first the case where A is strictly positive, A-é is bounded and the trans-
formation (1,.8) yields
;l - 0 A% w1
wz -A% - wz . = £Bw (1.13)

Unless B is bounded it cannot be expected that £B will generate a group on W ; a
semigroup is all we get, For X > 0 , our assumptions imply that )I + B is self-

adjoint and non-negative. We compute

% 1y,2
Az -a° w .
5 = 22at2 + At
A’ AI+B) | w
W
H 1, 1.
+ ((AI + B)wz, (AT + B)wz)X + HAéwzﬂi + (Aizwl,sz)y + (sz,Azwl)x .

Since

u

(A1 + B)WS, (A1 + B)wz)x xznwznx . ZA(wz,sz)x

2 2

2 2 2,2 2
+ (Bw ,Bw )xikllwllx+ll8wllx , A >0,
and since P
%12 2,2 51 2 2 R 2,
la*w Hx + I Bw "X + (A°w ,Bw )x + (Bw ,A wl)X = [[a*w” + Bw ”x >0
we are able to conclude that
Al l\.1/z L
- w
) 2 2adtn? e, o (110
A? A1+B) |w

as defined on the domain

2 1
< D@’ n Dm). (1.1%

l y 1.
wor 0ah, w
1 2
For such w = (w" ,w"), then,
MR(A LI < & A0
B - ! °
The Hille~Yoshida theorem applies if the domain of CB is dense in W and ﬁB is
c’os~d, For the first of these requirements we assume

)
D(a®) » D(B) is dense in X ,

T e e
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2
For the second we observe that if {(w;,w:)} converges in W and EB(W;.WK)

converges in W , the latter implies that

1
{A?wi} converges in X , (1.16)
(A?wi + Bwi} converges in X . (1.17)

1
From (1,16) together with the fact that Aé, being self-adjoint is closed, we conclude
1
that wz Z1lim w: € D(Ai). It is not, howevegr, easy to conclude from (1,17) that either
P ko
{A’wi} or {Bwi} is convergent, 1Indeed, take the case where B = A. Using a coordi-

nate system based on an orthonormal system for A , we may represent

%o olik kL.
(fiA3A5, 000

and vectors x ¢ X may be represented by their expansion coefficients:

A=B= diag(xl,xz,A3,°-'), A

<«
2
X = (x11x21x3;"')1 kzl lxkl < =,
Assuming that 1lim Ak = +®, a sequence {xk} with positive elements may be found such
ko
that

°z° 2 °z° 2 % 2
[%, |€ < =, [Af x| = J A |x | ==,

L 1 oy R Mk X k' *x
Assuming no Ak =0, let

2 5k %

Wy, = (xl/)\f,xz/)\z,---,xk/)\k 10,0,009)

1

wk = (-xl, -xz' eee, -:&,0,0,"0).

1 1
Then {w;},{wi} are convergent, {Aéw:} is eonvergent, {Aéwi + Awi} = {0} is con-
vergent but neither
L o1 )3 ]
(% Wi} = {-adx -1k ser A 40,0,000))

11 2’

nor

1, 1 1
{Awi} = (O Aok e oo 0Ex ,0,0,000) )

are convergent, Thus the operator IA is not closed on the domain (1.15), which in

this case is
1 % 2 %
wo e DAY, w* e D7) n D(a) = D(a). (1.1%)
The operator IA is closable because it can be shown to have a complete set of eigen-
vectors in W = X @ X and from that, via the Galerkin method ([6)), it can be shown

tn~. there is a strongly continuous semigroup, SA(t), of bounded operators which

-be

TR PDOR PSS DT R 9= 17 4T T R




1
A w2

has a closed generator, which we will still call IA , defined by

satisfy é% S (t)w = £ASA(t)w whenever w = satisfies (1.18). Then SA(t)

Lw=1lin 2(S (t) - Dw
t+0
for all w such that this limit exists. Denoting this set of w by D(IA), £A will
be closed. In general this domain is larger than the one described in (1.18).

Despite this eventually positive outcome for the case B = A , the example shows
that it will not be easy to characterize all instances wherein LB is a closed
operator or, at least, has a closed extension.

At least two procedures come to mind. For some applications it is reasonable to
assume that B is A%-bounded, i.e., the domain of B includes the domain of 15‘1é and

there is a positive number M such that

% %
iBxl < M=l +0Aa%) , x e D(a®).

1 1.
In such an event the domain of £B is precisely {(wl,wz)lw1 e DY, w? e DA%},

1
(1.16) implies that {Bwi} converges in X and that, with (1,17) implies that {a*

converges in X . Then £B is closed as defined on (1.15).

A second possibility is to show that £B is maximal dissipative or that it has
maximal dissipative extension. The theory of Phillips [7] then applies to show that
the maximally extended dissipative operator generates a semigroup SB(t) and is a
closed operator. This is essentially what we have already carried out for the case

B=A,.

AT 1y




5 2. Structural Damping and Holomorphic Semigroups: Imglications

The basic property of structural damping, which is said to be consistent with

[9]1) is that the amplitudes of the normal modes of vibration

empirical studies ({31,

are attenuated at rates which are proportional to the oscillation frequencies, We will

see that this is an important property, implying as it does that many distributed

systems act in a manner more like finite dimensional systems than would otherwise be

the case.

The subject of energy dissipation in elastic systems has been extensively studied

f é in the literature., (See, e.g. [ 3).) Nevertheless mathematical modelling appears

In [3] and [4] the representation

to be rather primitive and ad hoc.

x + (L +8i)Ax = 0 (2,1)

i i 1 < s00 < (XN
is used. Assuming that A has discrete spectrum O < Xl < Az An < An+1 <

with corresponding orthonormal eigenvectors ¢l,¢2,¢3,--- , (2.1) has solutions

{
Okt l
i
$

xk(t) = e ¢k

if and only if

2 .
O * (1 * él)Ak =0,

o . \ '/ ‘
.
\ V4
"' . N "
\ / Spurious
Retained \. - or
values extraneous

\\ values of
o\ Ok
: N

o \,
’ ,

8\

Figure 1

Spuricus spectrum, %X = (1 * &i)Ax

giving

1.
(=(1 = 1)) ‘.

[ A,_wm»w‘*:ranmt'wrnp AL A LT e e e R PV



Since

-1
“’i‘ + 62 e:i(tan § + n)’

-(1 ¢ Gi)Ak

where w, = /T; , we have

k
o = towy 4Jl + 62 etlw , V= %(tan—16 + 1),

four values for each integer k , These lie in an "X" pattern in the complex plane,
symmetric with respect to both the real and imaginary axes (Figure l). In engineering
use, those lying in the right half plane are rejected as extraneous, those in the left
half plane are retained. This does not correspond to choosing one to the signs + or
- in (2,1), however.

Equation (2.1) has numerous disadvantages. First of all, it is not properly an
equation and there is no associated strongly continuous semigroup. Secondly, if A
denotes a positive symmetric matrix representing a discretization of the elastic oper-
ator A , the equation

+ (1t Si)Ax =0, xe¢ E ,

E3H

is still not computationally useful for generating approximate solutions. There is
the obvious problem of introducing complex numbers into an equation which is supposed
to represent a real system, Further, the "extraneous" solutions will grow and eclipse
the decaying solutions which are actually desired. This remains true for the real
fourth order equation
B L okk s x 6HA%R =0 (2.2)
which has the same solutions as (2.1).
The form of (2.2) is, nevertheless, suggestive of the prototype model for this
paper which is
X + ZOA%i +Ax =0, (2.3)
where A% denotes the positive self-adjoint square root of A . For (2.3), trial
solutions

ot
xk(t) = e ¢
lead to the equation

2 '
ok + Zoakxk + Ak =0

8-




or [
=-2pw, * Y4p Ak - 492

_ k ~ k _ A 2 +iy _ -1{ ¢ (2.2)
0, = —wk(-pill p)—wke , U = tan fl.-sj' .

k 2
if 92 <1 , which we would normally anticipate for lightly damped structures. In
(2.4) we have exponents forming a pattern ">" in the complex plane, a pattern quite

similar to the retained o of the earlier model (2.1). (See Figure 2.)

\
o\~!r,-w

‘\'
\
)
.i 3
/
’
.
(4
o
4
Figure 2

Spectrum for the system (2.3)

The system (2.3) has many advantages in addition to not producing extraneous
spectral values., It is a bona fide dynamical system; we will see in the next two

sections that this system corresponds to a system (1.13) with
(¢} A%

L 1
2pa? -n?  ~20a°

such that £ ;, genarates a stronqly continuous (in fact, holomorphic) semigroup in
2pA*¢ .
W =X & X, and that this remains true for the operator LB if B "resembles" 2cA°

appropriately.
The eigenvectors of [ ;, also have properties which are desirable from the

2pA*
analytical point of view. If we denote the normalized eigenvectors of A (equiva-

1.
lently A) in X by ¢k , k=1,2,3,*+¢, then the normalized eigenvector of the

antihermitian operator




0 a?)
£O = 1.
| -at 0
corresponding to iuk, -imk, are seen to be

°x %
. 72 _ V2
8, = |.. ;o0 = . , k=1,2,00¢, (2.6)
k ka k 1ok

2 /3

and it is easy to verify from the corresponding properties of the in X that the

x

vectors (2.6) form an orthonormal basis for W = X ® X - which would also follow from

the fact that the operator (2.5) is antihermitian, The normalized eigenvectors of

L ;  corresponding to the eigenvalues “ etlw are
2pa°
k x
. 7z _ 7
T iy e T v k= L2,
e ¢k e ¢k
2 V.
t 2
which may be seen to be related to the vectors (2.6 ) by the transformation
e ! 0 ()
% T O
cos ¥Y1I sinV¥ I

in W = X & X. Since this transformation is bounded and boundedly invertible for

+
';-j_ ¢ < =, which corresponds to 0 < p <1 , we conclude that the ‘i’}i‘) form a
uniform, or Riesz, basis ([l], [8]) for W = X & X, that is, given w « W, w may be
expanded in the convergent series
oo
+ -
W = z (w, + Y, +w =Y )
kel k k k k
and there are positive constants ¢, C, such that
-2, 2 < 42 -2 2, 2
c HWW_ E (WU +|wU )icuww.
Among other things, this implies that ;. is similar to a normal operator - which

2,87
is also easily seen from the operator identity

-0~

(2.5)

et etrn
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[EL T e Nl Lt & o

T

:
5
¢

-1 1

1 1 1 1 iv %
i 2 -
;‘?? I :5=I‘ 0 a /5=I e a I e A 0

. _iul . iy = .
p i iy | iy iy sy o1
e e H 1 1 e e -1y 4
{7§= 1 j;"J l A7 - zoAz T A1 0 e " 'a

These observations lead to a number of significant consequences. Let

b1 c1
b= ’ c =
b2 c2
be vectors in X . The transfer function for the forced system
1 4
. wl o Aé wl b1
w o= = % 7/2 + f=4L I W o+ bf
w2 A 2pA L w2 b2 20A
with output
wl(t) C1
w(t) = ’ = (w(t:),c)W
2 2
w (t) cyw
is the function
-1
R(%) = AL - L 1 b,c .
20A w

This function is invariant under any transformation
w=Ty,

in particular for (cf. (2.7))
1 1

T E?
T="T, = ’
¥ iy iy
S 1 =1
72 75
in the sense that
- -1 -1 *
ROD = (CI-T0C T,
208"
and in the case (2,9) this gives
iy -
[[(;1 - etfan 0 L s
k() = i -i¥ % =1 T\P b'T‘{’C .
‘i 0 O1 - et¥at) w

1
rrom the fact that A , and hence Aé, is positive, we see that if |arg(x) - WI,

K fat
<4( ) + :; are bounded away from zero, ]R(A)I:.———- for some positive K .

-11-

2.7

(2.8)

(2.9)




In particular, as long as 0 < p < 1, we see that the frequency response function F(i.)

has the property

[R(iw) | < . (2.10) .
vl
This is emphatically not true for the undamped operator £0 , or for the operator

fyI » Y > 0 , corresponding to viscous damping. In those cases all that can be asserted

is that |R(iw)| is bounded. The inequality

(AT ~ -L‘B)-lll < lMl , larg A < ¥ - ¢, (2.11)
A

)
which follows from the above considerations for B = ZpAé, is the fundamental hypothesis

required in order that IB should generate a holomorphic semigroup in W . An in-
equality of the form (2.10) easily follows from (2.11). Since systems whose frequency
response functions satisy (2.10) may be modelled effectively by finite dimensional
systems - as will be shown elsewhere - structural damping and the closely allied property
of holomorphic semigroup generation have significant practical modelling implications.

To conclude this section we remark that, although A being a differential operator
does not at all ensure that A% is such, this does not impede the usefulness of (2.3)
in computations, If one approximates A by a positive, self-adjoint finite dimen-
sional matrix A , the positive self-adjoint square root matrix ﬁp may be calculated
readily and the finite dimensional system

w+Aw=0

Al
Aé

L,

+ 2p

£>

is then available for computational use.

-12-
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3. A Sufficient Condition for General Damping Operators B .

We wish now to consider the general second order equation
X+ Bx+AXx =0 (3.1)
with, as we have seen, the equivalent first order representation
wl 0 A% wl

w = = : Lw. (3.2)

1
w2 -A/2 -B w2

Following the discussion of the previous section, our objective is to determine condi-
tions on B sufficient in order that IB should generate a holomorphic semigroup in
W - and we want to do this without making overly restrictive assumptions on B , such
as B = YA%, B = yA, or, for that matter, B = yf(A) where £()) is an analytic
function of ) in a region containing the positive real X axis with £() > 0

for A > 0 . Nevertheless, in the present seetion, we are concerned with operators

B which are closely related to A%. Specifically, we will assume at the outset that
%

1
B is A“-bounded so that, as noted in Section 1, LB is closed.

From [5] we know that a sufficient condition for £B to generate a holomorphic

semigroup is the following: that £B should be closed and that there should exist

a positive number 81, 0 < e1 < %, such that
- M
IIR(A,IB)H = || (AT - LB) il :'T;T ’ Ml = Ml(e) , (3.3)
for |A| sufficiently large in any sector
largn| <7 +0, 0<p< 8, (3.4)

of the complex )\ plane. When this is true the semigroup SB(t) generated by [B
is defined for t in the dual sector
{0} u {t]||arg t]| <« o}

and for each w ¢ W , SB(t)w is a holomorphic (i.e., differentiable with respect to

0 I) vector valued function in ({t||t| > 0,]arg t] < et

=13~

el
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We have already presented, in Section 2, a discussion of the significance of
the holomorplicity of SB(t). From that work we know that solutions w(t) = SB(t)w
corresponding to holomorphic semigroups SB(t) exhibit a number of properties -
characteristic of structural damping.

1
Theorem 3,1 Let B , positive and self-adjoint, be A? bounded and, in addition,

let B satisfy
. 1 1
E B = szz + C A* (3.5)

where C is a bounded operator. Then there exists a positive number m{p) (depending

only on p and A) such that whenever

lich < mip) ,
£B generates a holomorphic semigroup on W =X & X .,
Proof We begin by noting that R(A,£B) can be computed explicitly. Representing
E AL - £B:W =X®X >X®X in operator matrix form as
—i o -a" -
M T A? AT+B ' i
it must be true that N
Or-£)01-0)7 -1 (3.6) .%

Representing the resolvent in matrix form also: !

W X
o1 - 270 - ,
Y Z
(3.6) is seen to be equivalent to
7. )
W-aX=1, M-AaZ=0 (3.7
1. 1
AW+ (XTI +B)Y=0, A+ (MI +B)Z=1. (3.8)
From (3.7) we have, immediately,
-1 2 -1
W= T(I +a’), X= 4 A°Z. (3.9)

Substituting (3.9) into (3.8) and multiplying the result by X , we have
3 2
A+ AY + (I + ‘B)Y =0,

As + (»21 + /B)2 = ;1 . v

These give

v=-021+.8+ M A%, 2= 214+ B+ 0L, (3.10) .

-14-
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é
Then, returning to (3.9),
. we T e aty = a7 - At s e+ 7D,
%= la% - A12()\21 + 2B+ AL, 1
Combining these results, and letting
P(-,A,B) = AZI + AB + A,
3 we have
" ‘ ( o - ao,an b afoLamt
R(V'.'LB) i [-P().,A,B)']“A',’ AP(A,A,B)-]‘ . 3-12)
i Since HhR(l,LB)H = A'MR(X,LB)H, all we need to show is that there is an Ml = Ml(e) 1
] such that
i kR().,IB)H <M (3.13)
i for || sufficiently large, |arg A[ < % + 6, Since A,B are self-adjoint
j p(2,a,8)" = 2(3,A,B)
‘ ®0,8,8 %" = 2% 1 ,a,m7"
‘ and it is enough to show that the three operators
A0,a,m %, aho,an™, %o,amt (3.14)
' are all bounded in the indicated region. |
:f Let ;. be the positive number referred to in the theorem. We have %
P(}>,A,B) = A21 + AB + A= A2 . 2oAA!§ + A+ A(B-ZOA%). |
By analogy with the quadratic formula, we set 5
:21 + 2.'}11\,2 +A=(0I+ [p+ (92 - 1)%]A%)(AI + [p - (02 - 1)%]A%)
1 1 (3.15) 3
(z Q" 00,090 Oye,2H0) 4
Then
PGB T e 0T+ 10 - (2 - DAaH s
1 o bo+62 = DA - 208901 + 10 =07 - DIAD 01 4 0 42 - AT j
s w9 s 0t AD T e = 20Da% QT e AT 0 (Lea DL (3.16)
) low suppose we can establish that the operators
0 Can™h, AR 0L anTt (3.17)
i ) arc uniformly bounded for |arg:| - =+ 5. Then, using this in {(3.16) we see that the

-2

| nperators (3.14) are all bounded just in case

-15- E




(r + Q*(A.p,a*)‘l (A% - sz)agg'(x

IBa™%

- 201l < m(p),
where m(p) is such that

Y - 3, - }
m(eMQ* (0,29 A% (h,0,aH 7 <

1
operator Af, the operators (3.18) have the rep
+ - +
ieah e [ oasos p¥ee? -
-—es P e, v e - n nOdP .- . -

% t - £ 2
A% (ApD,A%) . [ w/+ o -
1,
o(Aﬁ)
and we have the desired result if the functions

A
D 7Y
A+ lotle? =

4
p (A,p,u) =

u
})
A+ (p:(p2 - 1)4]u

*
a (A,p,p) =

Ll
-2-+6-
We consider first the case where p > 1 .
1, 1
min{p + (02 - 1)4, P - (p2 -V =0p

1. 1
max{p + (92 -17% o - (p2 - =p

from ) to one of the points -ur+ or -ur- .
the negative real axis, (See Figure 3.) Clearl
¥ > % -8>0.

Then, by the law of cosines

so that

) - -
1) 1.-1

'0,A ]

y<1

resentations

%

1) “lu)ae(w) ,

1
1) %)) aeu

1
Then (D2 - 1)4

1,

- (92 -1t =

1
+ 2 -1t

In this case we can take © ¢to be any positive number < n/2 .

Let Y be the angle between

Yy

A+ uet]2a A2+ Jurf)? - 2 cosy A lurt]

r

+
r

is positive and

>

>

The modulus of

uniformly for sufficiently large |[A| in the sector [argh| < % + 6.

)
G(g) ABQe T B S MW . G e . 8 AEEES

0

0

is bounded. Again using the boundedness of the operators (3.17), this will be true if

Letting E(u) be the spectral measure associated with the positive self-adjoint

are uniformly bounded for 1y € o(A%), |A| sufficiently large in the sector |argh| <

.
p (A,p,u) 1is then the ratio of the distance from ) to the origin to the distance

st e i e




e
- 0g

.(%gg

R

s,

B AW ety Tr

o nig

Figure 3

so that

VR & N et 2 - 2 cos |l 7l N 1. (3.19)

I+ uytl A+ u:tl |x + pr!| A + uri|

Now it is clear geometrically that

3

-——JHE—$— < csc(g-- 8) = sec 6 (3.20)
A+ ur™|

80 that

seco

1 ri

l[a¥th,0,m . , (3.21)

Then, using (3.20) in (3.19)

___.IAL_]2 - 2 cos ¥eec 8 —2l— .

[+ urf| [x o+ ur®|

which implies that

-——JAJ°-—' < @os Y sec ¢ + vcos ¥sec 0 + 1 , (3.22)

[x+ |

p < 1 the argument is not very different. 1In this case the numbers

-p Mb -1l=p 1/1 - p5 ‘ are conjugate complex numbers and -urt lies on one of
the rays
-1 i T -1

Iugxl-g-u-tan 2——2---2-+sin )
-0

in the left half plane as shown in rigure 4, where we have set

6, = sin1p,
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ela
Figure 4

The symmetry of the situation allows us to consider 1} in the upper half of this

sector only. We let Y be the angle between ) and the ray arg X = g + 8 . Then
Y >0 - . i
28 -0>0
Using the law of cosines in precisely the same way as before we have (3.20) modified to j
t .
—JJEL—L~—— < csc(9, - 8) (3.23)
£ = 1 .
[x + ue”|
E and (3.22) is replaced by
‘_‘JAJ'f:- < cos ¥ cscif, = 68) + Vébsz Wcscz(el-e) + 1. (3.24)

|). + ur—l

This completes the proof.

The result shows, in effect, that the set of operators B for which LB generates
a holomorphic semigroup includes a neighborhood, relative to the operator topology
I Bll , = "BA-%H about B = 291\1é for any positive number o . Inspection of the case i
; %
5 o] =Aé1 shows very quickly that this is the best result one can obtain in terms of
[ II% . However, the result is not satisfactory for many purposes. What we would
eve:tually like to be able to prove is that if B is a positive self-adjoint operator

such that

1. 1
a?, x . D(ad, (3.25)

or else (not, in general, equivalent)

SR T T A T ST A T iy




T e T

T T ERTA T

2 2
<
ASE

then IB generates a holomorphic semigroup on W = X & X,

o g.piA . xe D) (3.26)
We can offer a partial result in this direction in the form of the following

corollary to Theorem 3.1l.

Corollary 3.2 For each p > 0 there exists €(p) such that if B is a positive

self-adjoint operator satisfying

%

1
[20 ~ €(p)IA% < B < (20 + c(p) 1A%, (3.27)

then IB generates a holomorphic semigroup on W = X @ X.

-%

Proof Multiplying (3.27) on the right and on the left by A we have
«l el

[20 = (P)II < A A ° < [2p + €lp)]I .

Then
<L ol
~e(p)I < A BA ¢ - 20T < elp)I
=t -l
and since A ‘B A % is self-adjoint, we conclude that
) -l
Ia™% a~ % - 2011l < (o) . (3.28)
+ %, =1 5, = % -1
Now the term @ (i,p,A") “A(B = 20A°)Q (A,0,A") which occurs in (3,16) can be re-
written as
Lo owl kL ol -l L L oa % -
ot 0,ah ™ 8% @™ B A7 - 2000 R0, 0,807

The proof then proceeds as before except that it is now necessary to establish the
boundedness of the operators

ot oo VR, 8,007,
Going over to the spectral analysis again, it is sufficient to establish the uniform
boundedness of the functions
\i,%

))
A+ ot -

*
ST (x,ppu) =

1
for u ¢ o(A’), |A| sufficiently large in the sector hmlli%+e.ansMu
* 2 * *
18 Oupud | = o 0, | lg (3,000 ]
This follows immediately from the work already done in the proof of Theorem 3.1 and

Corollary 3.2 follows.

i




T

It is possible to prove Theorem 3.1 in a slightly different way by first carrying

out the proof for the case

1
B=2nat
P

and then applying a result in [5] on perturbation of holomorphic semigroups. One

needs only to observe that, with

1
[ o At
A = 1 1
-a* -2 7t
\ [
the operator
o 0
C =
0 CAIs

is A-bounded with A norm tending to 0 as ICll tends to zero.
in [5) then shows that A + C generates a holomorphic semigroup.
(3.29) generates a holomorphic semigroup is almost immediate when

as pointed out in Section 2, A is similar to a normal operator.

AL X LT Y i e T

(3.29)

The cited result
The proof that

one notes that,
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4. _A Result for Strong Structural Damping

We have noted our conjecture that fs in (1.13) should generate a holomorphic
semigroup if B 1is self-adjoint and positive and (3.25) or (3.26) is valid. Though
unable to obtain a result of this strength at the moment we can present a theorem
valid under hypotheses significantly different from those made in Theorem 3.1.

Assuming that
o2iui? < ima % ? < odwm? (4.1)
equivalently,

> >0, (4.2)

2 2
OIA <B < 021\:

270
The theorem applies, basically, when pl is large and Py is not "too large" in
relation to pl. We will call this the case of "strong" structural dumping.
1
Let us note, first of all, that (4,1), (4.2) imply that IiBxll < klllAéxII for some

kl not greater than Py o We will see later that (4.1) implies

-,
p2ix? < 1A% < o3 (4.3)

-l S PR ~
so that 1A~ % A~ % a’xl < kzllxll with k, not greater than Py e We let k =

2
sup(kl,kz) +» Then

) wl al ~ o1
IBxl < kIa%xll, Aa™%Ra” Yl < kia~ i, (4.4)
Theorem 431 Let B be positive and self-adjoint, let A be as in Section 1. Let

-l
BA ?

-' -1
satisfy (4.1) and let the range of BA % be X - so that BA % is bounded and

boundedly invertible, Then the aperator .CB (cf. (1.13)) generates a holomorphic

semigroup SB(t) for t in the interior of the sector

J = 1{t ec|jarg t| < tan" 19},
9

for some ¢ > 0 , provided that for some ¢ , 0 < ke <1,

k 1
(i) 1-(E+2)—2->0’
“
2 1
(ii) 1+-2- Toke >0 ;
P2
: k 1 1 1 2 2
(iii) [1-(;;4»2)-71-[E+1_k€-(1+—2))0 >0 .
"1 P2

i




ﬁ
o

b For future reference we observe that (4.4) implies that for some k < 2k .

[ (ax,Bx) - (Bx,Ax)| < Kia%dliaxi, x ¢ D(a) (4.5)
b If B:D(Aa/z)*D(A), this can be replaced by the commutator condition .
g [ (x, (aB-BA)x) | < kﬂA”éxnnAxu, x - D3y, (4.6)
: The proof of Theorem 4,1 involves, as before in Theorem 3.1, showing that the
. three operators
A12P(>«,A,B)-1A,2, .\A’éP(A,A,B)-l, 320 ,a,8 7t (4.7)
. are uniformly bounded in the sector
: Z(tan_lﬂ + %) = {ar . €} larg *| :.% + tan”to, (4.8)
To this end, we establish
Lemma 4.2. Given (i) - (iii), (4.5), there exist positive constants €€, such that
e c,a,mx? 2 e [ fa? + e iaxt?, x D@y, JeeanTh v 2 (4.9)
E if 9 is sufficiently small.
é Proof Let X = ¢ - in. Then for x ¢ D(a) -
‘ (P00 ,A,B)x, POLABIX) = ((\°I + 3B + a)x, (\°1 + 1B + A)x)
= I e a7 nea? + naxd? s 200, Bo) + 2067 = n?) (x,A%) (4.10) .

+ E£[(Bx,Ax) + AX,Bx)] + in[-(Ax,Bx) + (Bx,Ax)] : Tl + T2 + T3 + T4 + TS + T6 + T7.

We divide the discussion into the treatment of two cases.

Case I: Re X = ¢ >0. In this case, T T T

1r Toe T4 are all non-negative. For T

Bas,

3’

we have, using (4.2) twice,

2 2
262 - nDyan > | Es - I bsa?
‘)2 IA'l

while for T6 , with ¢ such that 0 < ke <1,

&

l~ke

E1(Bx,A%) + (Ax,Bx)] < 2¢llaxliiBxi < WBxl? + (1 - kelaxi? , (4.11)

for T7, with ¢ > 0 , using (4.5),

1 H
in(=(ax,Bx) + Bx,a01] < kin|iaiiaxle g5 n2had? + kalax®
K
4¢y

<

= 0> e+ ke laxi® . (4.12)
2 .
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Combining these, we see that (4.10) satisfies

7 4 2 2 2
Poro> §or o+ | 2 o 2 lie? - S ya?
L E i—-. i 2 2 1-ke
i=1 i=1 Py 01
- - ke Haxl? = X n? yeai® - ke faxi®
4Epl
s P a? et e 2 - —2? s a - 20y 0?) yeal?
2 2" 1T - ke 2 2
£y oy 4201

+ ke -8 laxi?
Let ¢ be such that 0 < ke <1 and (i), (ii) are satisfied. Clearly, if 0 < E <
and & is sufficiently close to ¢ , the coefficient of HBx"2 is nonnegative.
Case II: Re A= £<0 , A e} (tan™ 19 + % ), i.e., =-£ <¥{n|. 1In this case only

Tl' T2, T, are obviously non-negative. We have, for 0 < §<g<1l, O<ke<l,

3
2
7, = 2lel P em0 < 0 - aa P i v i me?
2 2
EL S 2
T, 2 > = Ixl?
2 °1
2 2 2
7g] < 75 UBxl® + 1 - ko) bAxb® , (ef. (4210
T | < % n? iexi? + ke laxi? (cf. 4.12))
7' - 2

4301

Hence

7 3 2
T, > - - a? o —5— i ?
) LR Ry

i=1 7T ia1 1-e
2 2 2
2
v Ee o B e? o e - - kel ? - K ymxi? - kelaxd
- €
92 pl 4301
4 2 2 k 2 1 2 1 2 2
= e|A| =l + (1 - -5 - :;‘5 n o+ (3 - T+ 31T kE)E 1 1 Bxll
° %1 P2 )
+ k(e = &)llaxi
zebfa? e fa -2 -2 - o v - ar Znfind i
4%p [¢]
Py 1 2

> el ixh? + e - B Haxh?

(4.13)

€

FRTTNG

L




if A e Z(tan_lﬂ + gﬂ, (i) - (iii) hold, 0 < & < ¢ and & is sufficiently close to =.
Combining (4.13), (4.14), taking ¢ = min(l,¢) = ¢, ¢, = k(e = )}, we see that
(4,9) holds and the proof of Lemma 4.2 is complete.

Proof of Theorem 4.1 As we noted before Lemma 4.2, we must establish that the operators

(4.7) are uniformly bounded in the sector (4.8). For the third operator in (4.7), the

result is now immediate.

120,281 = 12 0,,8 02012 > o, 42?4 e a0 301% > e lixi® . (a.19)

To treat the first operator, we note that with the transformation

r=2
=3
which may be seen to leave any sector (4.8) invariant, and with
-k -k -1

BlsA‘BA’,A1=A R
we have

-l -l

AT (,a,80a7F = 3% (0, ,B)). (4.16)

We verify that P(;,Al,Bl) satisfies the hypotheses of Lemma 4.2, From the second
inequality in (4.4) it follows that
- -l % -l -l
UAT7BI = W(BA D i = hBa U < o, =~ A BxI? < ;ﬁ";u::nz . (4.17)

The first inequality gives, in the same way

-1 1? Loy % [
187k = nan ™ = ia% T < -
-5 pl
so that, with y = A ‘Bx ,
-1k -2 2
1871 < L uyh? - naT%ai? > of wwi? . (4.18)
A1
Combining (4.17) and (4.18),
2 -l
o7 1x? < ia"mu? < oZin? (4.19)
ok ck -k ¥

Since A"°B =14 %BA ‘A = BlAl we see that BIAI is bounded

1
%z

-l
on the domain of A® and, since that domain is dense in X , BlAl K extends to a

-l
bounded operator on X , which we still call Blhlé. Then we note that, just as we
obtained (4.5}, we have, readjusting k in (4,5) if necessary,
1
2,
](Alx,le) - (le,Alx)l < Kllayxiia, xi (4.20)
Proceeding as in Lemma 4.2, we see that if the inequalities (i)=-(iii) are satisfied

we have

-24=
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)

2 4 .2 2 i
IlP(c,Al,Bl)xII _>_c1ll gl Tl 5+ czllhlxll k

"

. so that i
12%8(z,n, 8% > e lni® (recall A=),
But, as we have noted in (4.16), this is the same as
N WS ML j
and we conclude that the first operator in (4.7) is hounded uniformly in the sector ]
fiean™o + 2.

Now consider the second operator in (4.7). We have seen (cf. (4.9)) that

e, > e 2[4 4 egtiaa® . (4.21) ;
Let us note that the hypothesis that A is self-adjoint and positive implies the same
for A%. Then it is easy to establish that for A € Z(tan‘lo + %0 the range of é
AL + A% is the whole space X . With 4
X = (}\-1/2 + A—lI)y ;

(4.21) gives

-l -
J'I)yll2 + c2HA(A T4 II)yll2 ;

-l - -l
HP(A,a,B) (A7 + A TDyyll > clm“u "t T
so that

- s ] - ) - 2
e 0uamAE 0T + afyl > e M+ T Hy? 4 gl 3+ Tyl

’ > g’ ezua’/’yuz >aar+angl?, &>, (4.22)
provided we can establish that there are positive numbers 81,32 such that for
Ae Z(tan'lo + % ), q
N+ hyl? > &i? , yex, (4.23) ’
vt s atan? > lat? , v < Db, (4.24)

This can again be done with the aid of the spectral representation for A which,

being self-adjoint and positive, can be written as

A= fmudE(IJ),
0

where E(uy) is the spectral family for A . Then
. -, L
Nz + 2Byl = 71+ " PaiEqyl? .
0

1

-1 - -
2 since u'é‘)o, )\uée}:(tan !9+-12,-) and




-1 -
L+ aw?|2 > cos?(tan”l(9)) = —L 5 .
1+9
Then
)
@+ aHy? > [fe—tgaemwmy? = —2im?
0 1+ 9 1+9
and we can take 81 = L 3 in (4.23). 1In the case of (4.24) similar considerations
1+9
lead to examination of the ratio
5 =1 2
u2+)\ll _ {l+>\-lu%{2> 1
Y, = -_—
W 1+ 92
-1% -1 T . s e . A 1
because A "u? e J(tan 9 + 3 ). Thus (4.24) is satisfied also with C, = —.
1 +0

3
%

Since R(AI + A
1

) -
) = X, (4.22) shows that AéP(A,A,B) L s uniformly bounded

for X ¢ Z(tan-

LIRS -1l = -1 K x ; -
A°P(),A,B) X = [AP(X,A,B) "A°] is uniformly bounded for X ¢ Z(tan

- 1
then AP(X,A,B) 1A% s uniformly bounded in that sector.

i . . P s . . .
9 + 50. Since this sector is invariant under conjugation, we conclude

1 bl
l’+5) and

At this point we have established the uniform boundedness of the three operators
(4.7) in Z(tan-l!9 + % ). From our earlier observations we conclude that L
generates a holomorphic semigroup if our conditions are satisfied, completing the
proof of the theorem.
Corollarz 4.1 Let cl'CZ be two compact operators on X ., Let B satisfy the
assumptions of Theorem 3.1 or 4.1 so that £B generates a holomorphic semigroup.

Then the operator

1
0 1\/2
% %, %
-2 -B+C1A +A C2

also generates a holomorphic semigroup.
Proof From a result in [10], the operator

%
1 0 0 A 0 A

[

1
C.A%B

I -A -B ~A 1

generates a holomorphic semigroup. By the same theorem,
1. 1
0 At 1 -c, [ 0 At
1

1. A 1. 1
2 2 2 2,
c,aA%B|| 0 1 l A B+C,A%4A"C,

also generates a hulomorphic semigroup.

1A =
=-A
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= 1%(0,8) and

Examples: et X
4 4
A= = with D(A) = {w € H (0,%) IW(O) = w(f) = w"(0) = w" (L) = 11}
dx
Let B be defined by
d dw
Bw = - = l(pl + kb, (x)) E;] + kbz(x)w ‘ pp >0

where bl,b2 are sufficiently smooth functions on [0,2) and k > 0, with
D(B) = {w ¢ H2(0,1) |[w(0) = w(2) = O}.

Then B is positive, self-adjoint and satisfies

piA < 8 < pga

for some Py > pl .
If bl(x) and bz(x) are not identically zero then A and B do not commute

in general. We have, for w ¢ D(AS/Z),

4 5 4
a a aw 3 a’w a’w
(AB - BA)Ww = — {-E;[(plﬂcbl(x))-al + kbz(x)w} + {a;[(ol-rkbl(x))—s - kb,—7 }
ax ax ax
5 4 3 2
- k[-4b]'_(x)d—g- - 1o by (x)g-—'} - (10 bl(” (x) - 4b:.2(x))-d—% - (Sb{‘”(x) - &by (x))d—;’
dx dx dx dax

(S) (3) dw
(b1 (x) = 4b2 (x))a;l .
d
since Aa32= - —~¢ + from interpolation one easily sees that the commutator condition
dx

(4.6) is satisfied provided that b{S)(x) and b;3)(x) are continuous functions on
[0,2] and that k is appropriate.
For any w ¢ X , define Cl,CZ:x > X by

cwx = [* e (x,0wle)ag , i=1,2
i o
where the kernels cl(x,g), cz(x,i) are Hilbert-Schmidt, and

2

—35 cz(x,g) is continuous in x for almost all ¢ ¢ {0,%].
IxX

By Corollary 4.1, we know that

1
%z

0 A
% %, 0%
-A =B+C)A+AC,
generates a holomorphic semigroup. [m]
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